Transbilayer movement of fluorescent phospholipids in Bacillus megaterium membrane vesicles.

نویسندگان

  • S Hrafnsdóttir
  • J W Nichols
  • A K Menon
چکیده

We investigated the transbilayer movement or flip-flop of phospholipids in vesicles derived from the cytoplasmic membrane of Bacillus megaterium. Since common assay techniques were found to be inapplicable to the Bacillus system, we exploited and elaborated a newly described method in which fluorescent phospholipids (1-myristoyl-2-C6-NBD phospholipids) are used as tracers to monitor flip-flop. These lipids were introduced into Bacillus vesicles from synthetic donor vesicles containing a fluorescence quencher. Transport was measured by monitoring the increase in fluorescence as the tracers departed the quenched environment of the donor vesicle and entered first the outer membrane leaflet and subsequently the inner leaflet of Bacillus vesicles. Independent experiments involving cobalt quenching of NBD fluorescence provided results consistent with the existence of pools of fluorescent phospholipid in the outer and inner leaflets of Bacillus vesicles at the completion of transport. Using the assay we show that phospholipid flip-flop in Bacillus vesicles occurs rapidly (half-time approximately 30 s at 37 degrees C) with no preference for a particular phospholipid headgroup and that it is sensitive to proteolysis. We also establish that flip-flop does not occur in synthetic phospholipid vesicles or vesicles made from Bacillus phospholipids. We conclude that Bacillus vesicles possess the ability to promote rapid transbilayer movement of phospholipids, and that the transport is probably protein (flippase)-mediated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reconstitution and partial characterization of phospholipid flippase activity from detergent extracts of the Bacillus subtilis cell membrane.

In bacteria, phospholipids are synthesized on the inner leaflet of the cytoplasmic membrane and must translocate to the outer leaflet to propagate a bilayer. Transbilayer movement of phospholipids has been shown to be fast and independent of metabolic energy, and it is predicted to be facilitated by membrane proteins (flippases) since transport across protein-free membranes is negligible. Howev...

متن کامل

Transbilayer movement of fluorescent phospholipid analogues in the cytoplasmic membrane of Escherichia coli.

We investigated the transmembrane movement of fluorescent labeled phospholipids in inverted inner membrane vesicles (IIMV) of Escherichia coli (E. coli) wild-type strain (MG1655), as well as in proteoliposomes reconstituted from detergent extracts of the IIMV. The transbilayer movement of 1-myristoyl-2-[6-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]caproyl]-sn-glycero-3-phosphoethanolamine (M-C6-N...

متن کامل

Transbilayer movement of fluorescent and spin-labeled phospholipids in the plasma membrane of human fibroblasts: a quantitative approach.

All phospholipids in the plasma membrane of eukaryotic cells are subject to a slow passive transbilayer movement. In addition, aminophospholipids are recognized by the so-called aminophospholipid translocase, and are rapidly moved from the exoplasmic to the cytoplasmic leaflet of the plasma membrane at the expense of ATP hydrolysis. Though these principal pathways of transbilayer movement of ph...

متن کامل

Rapid flip-flop of phospholipids in endoplasmic reticulum membranes studied by a stopped-flow approach.

The transbilayer movement of short-chain spin-labeled and fluorescent 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) phospholipid analogs in rat liver microsomes is measured by stopped-flow mixing of labeled microsomes with bovine serum albumin (BSA) solution. Extraction of analogs from the outer leaflet of microsomes to BSA can be directly monitored in conjunction with electron paramagnetic resonance...

متن کامل

Stability of transbilayer phospholipid asymmetry in viable ram sperm cells after cryotreatment.

The transbilayer dynamics of lipids in the plasma membrane of mammalian sperm cells is crucial for the fertilization process. Here, the transbilayer movement and distribution of phospholipids in the plasma membrane of fresh, ejaculated and cryopreserved ram spermatozoa was studied by labeling cells with fluorescent analogues of phosphatidylserine and phosphatidylcholine. By co-labeling cells wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 36 16  شماره 

صفحات  -

تاریخ انتشار 1997